Efecto del estrés hídrico en la germinación de semillas de Sorghum bicolor (L.) Moench cv. UDG-110

  • Yunel Pérez-Hernández Centro de Estudios Biotecnológicos, Facultad de Ciencias Agropecuarias, Universidad de Matanzas
  • Marlen Navarro-Boulandier Estación Experimental de Pastos y Forrajes Indio Hatuey, Universidad de Matanzas, Ministerio de Educación Superior Central España Republicana, CP 44280, Matanzas
  • Leannys Rojas-Sánchez Centro de Estudios Biotecnológicos, Facultad de Ciencias Agropecuarias, Universidad de Matanzas
  • Leticia Fuentes-Alfonso Centro de Estudios Biotecnológicos, Facultad de Ciencias Agropecuarias, Universidad de Matanzas
  • Maryla Sosa-del Castillo Centro de Estudios Biotecnológicos, Facultad de Ciencias Agropecuarias, Universidad de Matanzas

Resumen

El presente trabajo tuvo como objetivo evaluar indicadores morfológicos y bioquímicos en Sorghum bicolor (L.) Moench cv. UDG-110 durante el proceso de germinación en condiciones de estrés hídrico inducido por polietilenglicol-6000. Las semillas se sembraron en placas Petri con diferentes concentraciones de polietilenglicol-6000 (0, 3, 6, 9, 12, 15, 18 y 21 %) y se colocaron en un cuarto de crecimiento durante ocho días. Se evaluaron los indicadores siguientes: porcentaje de germinación, valor de germinación, longitud de la raíz y de la parte aérea, actividad á-amilasa y los contenidos de proteínas, azúcares reductores y fenoles solubles. Se utilizó un diseño completamente aleatorizado con cuatro réplicas por tratamiento. El polietilenglicol-6000 afectó el porcentaje de germinación y los caracteres morfo-fisiológicos, como la longitud de las raíces y las partes aéreas. La actividad á-amilasa aumentó en las variantes con presencia del agente osmótico, con valores superiores al 9 %. En las concentraciones bajas e intermedias de polietilenglicol-6000 se observaron los mayores contenidos de azúcares reductores y proteínas solubles totales en la raíz y la parte aérea, respectivamente. La concentración de fenoles solubles en la parte aérea alcanzó valores elevados entre el 15 y el 18 %, lo que puede estar relacionado con un mecanismo de defensa antioxidante para enfrentar las consecuencias del estrés oxidativo que se genera en diversas condiciones de estreses abióticos. El polietilenglicol-6000 afectó el proceso de germinación de S. bicolor cv. UDG-110, aunque hubo germinación con el 21 %, lo que evidenció la presencia de mecanismos de tolerancia a la sequía, como la producción de compuestos osmáticamente activos y la síntesis de sustancias antioxidantes.

Citas

1. Achón-Forno, I.; Paniagua-Alcaraz, P. L.; Villalba-Romero, Nancy & Romero-Gavilán, M. Efectos de la aplicación de bioestimulantes sobre la tolerancia del Sorghum bicolor (L.) Moench al estrés salino. Investigación Agraria. 16 (1):11-20, 2014.
2. Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373399, 2004.
3. Baâtour, O.; Mahmoudi, H.; Tarchoun, I.; Nasri, N.; Trabelsi, N.; Kaddour, R. et al. Salt effect on phenolics and antioxidant activities of Tunisian and Canadian sweet marjoram (Origanum majorana L.) shoots. J. Sci. Food Agric. 93 (1):134-141, 2013. DOI: http://doi.org/10.1002/jsfa.5740.
4. Blokhina, O.; Virolainen, E. & Fagerstedt, K. V. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91 (2):179194, 2003.
5. Castroluna, A.; Ruiz, O. M.; Quiroga, A. M. & Pedranzani, H. E. Efectos de la salinidad y sequía sobre la germinación, biomasa y crecimiento en tres variedades de Medicago sativa L. AIA. 18 (1):39-50, 2014.
6. Channaoui, S.; El Kahkahi, R.; Charafi, J.; Mazouz, H.; El Fechtali, M. & Nabloussi, A. Germination and seedling growth of a set of rapeseed (Brassica napus) varieties under drought stress conditions. IJEAB. 2 (1):487-494, 2017. DOI: http://dx.doi.org/10.22161/ijeab/2.1.61.
7. Chen, Z.; Zhu, D.; Wu, J.; Cheng, Z.; Yan, X.; Deng, X. et al. Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots. Scientific Reports. 8 (1):77-90, 2018. DOI/ https://doi.org/10.1038/s41598-018-25959-8.
8. Chernane, Halima; Latique, Salma; Monsori, M. & El Kaoua, M. Salt stress tolerance and antioxidative mechanisms in wheat plant (Triticum durum L.) by seaweed extracts application. IOSR-JAVS. 8 (1):36-44, 2015. DOI: http://doi.org/10.9790/2380-08313644.
9. Djavanshir, K. & Pourbe, H. Germination value-a new formula. Silvae Genet. 25 (2):79-83, 1976.
10. Fathi, A. & Tari, D. B. Effect of drought stress and its mechanism in plants. Int. J. Life Sci (Kathmandu). 10 (1):1-6, 2016. DOI:http://dx.doi.org/10.3126/ijls.v10i1.14509.
11. Friend, J. Lignin and associated phenolic acids in cell walls. In: S. I. Gurr, M. I. McPherson and D. J. Bowles, eds. Molecular plant pathology and practical approach. London: IRC Press at Oxford University Press. p. 51-59, 1992.
12. Gholami, M.; Rahemi, M. & Kholdebarin, B. Effect of drought stress induced by polyethylene glycol on seed germination of four wild almond species. AJBAS. 4 (5):785-791, 2010.
13. ISTA. International rules for seed testing, seed vigor testing. Cap. 15. Switzerland: International Seed Testing Association, 2010.
14. Jain, C. & Saxena, R. Varietal differences against PEG induced drought stress in cowpea. Oct. Jour. Env. Res. 41 (1):058-062, 2016.
15. Jamil, M.; Lee, D. B.; Jung, K. Y.; Ashraf, M.; Lee, S. C. & Rha, E. S. Effect of salt (NaCl) stress on germination and early seedling growth of four vegetables species. JCEA. 7 (2):273-282, 2006.
16. Khan, A. H. R.; Uddin, M. J. & Bayazid, K. N. Polyethylene glycol (PEG)-Treated hydroponic culture reduce length and diameter of root hairs of wheat varieties. Agronomy. 5 (3):506-518, 2015. DOI: http://doi.org/10.3390/agronomy5040506.
15. Khaton, M. A.; Sagar, A.; Tajkia, J. E.; Islam, M. S.; Mahmud, M. S. & Hossain, A. K. M. Z. Effect of moisture stress on morphological and yield attributes of four sorghum varieties. Progressive Agriculture. 27 (3):265-271, 2016. DOI: http://dx.doi.org/10.3329/pa.v27i3.30806.
16. Khayatnezhad, M. & Gholamin, R. Effects of water and salt stresses on germination and seedling growth in two durum wheat (Triticum durum Desf.) genotypes. Sci. Res. Essays. 6 (21):4597-4603,2011. DOI: http://doi.org/10.5897/SRE11.913.
17. Kulkarni, S.; Hongal, S. & Shoba, N. Standardization of optimal concentration of PEG 6000 for induction of drought and screening of coriander (Coriandrum sativum L.) genotypes. TAJH. 9 (1):100-105, 2014.
18. Li, W.; Zhang, X.; Ashraf, U.; Mo, Z.; Suo, H. & Li, G. Dynamics of seed germination, seedling growth and physiological responses of sweet corn under PEG-induced water stress. Pak. J. Bot. 49 (2):639-646, 2017.
19. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L. & Randall, R. J. Protein measurement the Folin phenol reagent. J. Biol. Chem. 193 (1):265-275, 1951.
20. Lum, M. S.; Hanafi, M. M.; Rafii, Y. M. & Akmar, S. N. Effect of drought stress on growth, proline and antioxidant enzyme activities of upland rice. J. Anim. Plant Sci. 24 (5):1487-1493, 2014.
21. Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31 (3):426-428, 1959. DOI: http://doi.org/10.1021/ac60147a030.
22. Mujtaba, S. M.; Summiya, F.; Khan, M. A.; Mumtaz, S. & Khanzada, B. Physiological studies on six wheat (Triticum aestivum L.) genotypes for drought stress tolerance at seedling stage. Agri. Res. Tech. 1 (2):1-6, 2016.
23. Muscolo, Adele; Sidari, Maria; Anastasi, U.; Santonoceto, C. & Maggio, A. Effect of PEG-induced drought stress on seed germination of four lentil genotypes. J. Plant Interact. 9 (1):354-363, 2014. DOI: https://doi.org/10.1080/17429145.2013.835880.
24. Neto, C. F. O.; Lobato, A. K. S.; Vidigal, Maria C. G.; Costa, R. C. L. da; Santos-Filho, B. G.; Alves, G. A. R. et al. Carbon compounds and chlorophyll contents in sorghum submitted to water deficit during three growth stages. J. Food Agric. Environ. 7 (3-4):588593, 2009. DOI: https://doi.org/10.1234/4.2009.2676.
25. Othman, Y.; Al-Karaki, G.; Al-Tawaha, A. R. & Al-Horani, A. Variation in germination and ion uptake in barley genotypes under salinity conditions. World J. Agric. Sci. 2 (1):11-15, 2006.
26. Pirdashti, H.; Sarvestani, Z. T.; Nematzedah, G. H. & Ismail, A. Effect of water stress on seed germination and seedling growth of rice (Oryza sativa L.) genotypes. J. Agron. 2 (4):217-222, 2003. DOI: http://doi.org/10.3923/ja.2003.217.222.
27. Rezende, R. K. S.; Masetto, Tathiana E.; Oba, G. C. & Jesus, M. V. Germination of sweet Sorghum seeds in different water potentials. AJPB. 8 (12):3062-3072, 2017.
28. Sani, D. O. & Boureima, M. M. Effect of polyethylene glycol (PEG) 6000 on germination and seedling growth of pearl millet (Pennisetum glaucum (L.) R. Br. and LD50 for in vitro screening for drought tolerance. Afr. J. Biotechnol. 13 (37):3742-3747, 2014. DOI: http://doi.org/10.5897/AJB2013.13514.
29. Shayanfar, A.; Afshari, R. T. & Alizdeh, H. Proteome analysis of wheat embryo (Triticum aestivum) Sensu stricto germination under osmotic stress. Plant Omics. 8 (5):372-380, 2015.
30. Sigarroa, A. Biometría y diseño experimental. La Habana: Editorial Pueblo y Educación, 1985.
31. Sim, S. L.; He, T.; Tscheliessnig, A.; Mueller, M.; Tan, R. B. & Jungbauer, A. Protein precipitation by polyethylene glycol: a generalized model based on hydrodynamic radius. J. Biotechnol. 157 (2):315-319, 2012.
32. Swapna, B. & Rajendrudu, G. Seed germination of Pongamia pinnata (L.) Pierre under water stress. Res. J. Recent Sci. 4 (6):62-66, 2015.
33. Thalmann, M. & Santelia, Diana. Starch as a determinant of plant fitness under abiotic stress. New Phytol. 214 (3):943951, 2017. doi: http://doi.org/10.1111/nph.14491.
34. Tsago, Y.; Andargie, M. & Takele, A. In vitro screening for drought tolerance in different Sorghum (Sorghum bicolor (L.) Moench) varieties. J. Stress Physiol. Biochem. 9 (3):72-83, 2013.
Publicado
2018-11-26
Ver tu Cita
PÉREZ-HERNÁNDEZ, Yunel et al. Efecto del estrés hídrico en la germinación de semillas de Sorghum bicolor (L.) Moench cv. UDG-110. Pastos y Forrajes, [S.l.], v. 41, n. 4, p. 243-252, nov. 2018. ISSN 2078-8452. Disponible en: <https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=2068>. Fecha de acceso: 03 jul. 2024
Sección
Artículo científico