Aplicación de herramientas moleculares para el mejoramiento genético de pasturas

Resumen

Objetivo: Fundamentar la importancia de la aplicación de herramientas moleculares en los programas de mejoramiento genético de pasturas.


Materiales y Métodos: Se consultaron y analizaron 59 artículos, que abordan los métodos basados en biología molecular (marcadores genéticos, tecnología CRISPR y citogenética molecular), disponibles en bases de datos (Google académico, Dialnet, Redalyc, SciELO, REDIB, DOAJ y Latindex), con el propósito de obtener información acerca de su aplicación en la mejora genética de pastos.


Resultados: Se recopiló información acerca de los principales marcadores moleculares (microsatélites, ADN polimórfico amplificado aleatoriamente, polimorfismo de un solo nucleótido, polimorfismo de longitud de fragmento amplificado), utilizados para analizar la diversidad genética en pastos. Se investigó cuáles resultan más efectivos y versátiles. Se constató que el fenómeno de la apomixis se puede utilizar para mantener el vigor híbrido en líneas de pastos y que los marcadores moleculares contribuyen a identificar plantas apomícticas en edades tempranas. Se fundamentó que la tecnología CRISPR (repeticiones palindrómicas cortas agrupadas y regularmente espaciadas) se puede aplicar en especies de pasturas para mejorar atributos agronómicos.


Conclusiones: Los marcadores moleculares, especialmente SNPs, son ideales para estudios de diversidad genética en pastos y para la identificación de plantas apomícticas a edades tempranas. La tecnología de edición genómica CRISPR constituye una herramienta versátil y aplicable en pastos.

Citas

Abdi, S.; Dwivedi, A.; Kumar, S. & Bhat, V. Development of EST-SSR markers in Cenchrus ciliaris and their applicability in studying the genetic diversity and cross-species transferability. J. Genet. 98:101. https://pubmed.ncbi.nlm.nih.gov/31767818, 2021.
Acuña, C. A.; Martínez, E. J.; Zilli, A. L.; Brugnoli, Elsa A.; Espinoza, F.; Marcón, Florencia et al. Reproductive systems in Paspalum: Relevance for germplasm collection and conservation, breeding techniques, and adoption of released cultivars. Front Plant Sci. 10:1377, 2019. DOI: https://doi.org/10.3389/fpls.2019.01377.
Ahmar, S.; Gill, R. A.; Jung, K.-H.; Faheem, A.; Qasim, M. U.; Mubeen, M. et al. Conventional and molecular techniques from simple breeding to speed breeding in crop plants. Recent advances and future outlook. Int. J. Mol. Sci. 21 (7):2590, 2020. DOI: https://doi.org/10.3390/ijms21072590.
Barcaccia, G.; Arzenton, F.; Sharbel, T.; Varotto, S.; Parrini, P. & Lucchin, M. Genetic diversity and reproductive biology in ecotypes of the facultative apomict Hypericum perforatum L. Heredity. 96 (4):322-334, 2006. DOI: https://doi.org/10.1038/sj.hdy.6800808.
Blackmore, T.; Thomas, I.; McMahon, R.; Powell, W. & Hegarty, M. Genetic-geographic correlation revealed across a broad European ecotypic sample of perennial ryegrass (Lolium perenne) using array-based SNP genotyping. Theor. Appl. Genet. 128:1917-1932, 2015. DOI: https://doi.org/10.1007/s00122-015-2556-3.
Bluma-Marques, A. C.; Chiari, L.; Agnes, D. C.; Jank, L. & Pagliarini, M. S. Molecular markers linked to apomixis in Panicum maximum Jacq. Afr. J. Biotechnol. 13 (22):2198-2202, 2014. DOI: https://doi.org/10.5897/AJB2014.13703.
Capstaff, N. M. & Miller, A. J. Improving the yield and nutritional quality of forage crops. Front Plant Sci. 9:535, 2018. DOI: https://doi.org/10.3389/fpls.2018.00535.
Carrodeguas-Gonzalez, Ayerin & Zuñiga-Orozco, A. Bases para la mejora genética en Gerbera hybrida. Repert. Cient. 23 (2):51-62, 2020. DOI: https://doi.org/10.22458/rc.v23i2.3000.
Catanach, A. S.; Erasmuson, Sylvia K.; Podivinsky, Ellen; Jordan, B. R. & Bicknell, R. Deletion mapping of genetic regions associated with apomixis in Hieracium. PNAS. 103 (49):18650-18655, 2006. DOI: https://doi.org/10.10737pnas.0605588103.
Chen, T.; Yang, Q.; Gruber, Margaret; Kang, J.; Sun, Y.; Ding, W. et al. Expression of an alfalfa (Medicago sativa L.) ethylene response factor gene MsERF8 in tobacco plants enhances resistance to salinity. Mol. Biol. Rep. 39 (5):6067-6075, 2012. DOI: https://doi.org/10.1007/s11033-011-1421-y.
Collard, B. C. Y. & Mackill, D. J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. T. Roy. Soc. A. 363 (1491):557-572, 2008. DOI: https://doi.org/10.1098/rstb.2007.2170.
Concepción-Hernández, Mairenys. CRISPR/Cas: aplicaciones y perspectivas para el mejoramiento genético de plantas. Biotecnol. Veg. 18 (3):135-149. https://revista.ibp.co.cu/index.php/BV/article/view/585/html, 2018.
Conne, J. A.; Mookkan, M.; Huo, H.; Chae, K. & Ozias-Akins, Peggy. A parthenogenesis gene of apomict origin elicits embryo formation from unfertilized eggs in a sexual plant. PNAS. 112 (36):11205-11210, 2015. DOI: https://doi.org/doi:10.1073/pnas.1505856112.
Fiaz, S.; Wang, X.; Younas, A.; Alharthi, B.; Riaz, A. & Ali, H. Apomixis and strategies to induce apomixis to preserve hybrid vigor for multiple generations. GM Crops Food. 12 (1):57-70, 2021. DOI: https://doi.org/10.1080/21645698.2020.1808423.
Garbus, Ingrid; Romero, J. R.; Selva, J. P.; Pasten, María C.; Chinestra, Carolina; Carballo, J. et al. De novo transcriptome sequencing and assembly from apomictic and sexual Eragrostis curvula genotypes. PLoS One. 12:e0185595, 2017. DOI: https://doi.org/10.1371/journal.pone.0185595.
Ghariani, S.; Elazreg, H.; Chtourou-Ghorbel, N.; Chakroun, M. & Trifi-Farah, N. Genetic diversity analysis in Tunisian perennial ryegrass germplasm as estimated by RAPD, ISSR, and morpho-agronomical markers. Genet. Mol. Res. 14 (4):18523-18533, 2015. DOI: https://doi.org/10.4238/2015.December.23.40.
Hamouda, M. Molecular analysis of genetic diversity in population of Silybum marianum (L.) Gaertn in Egypt. J. Genet. Eng. Biotechnol. 17 (1):12, 2019. DOI: https://doi.org/10.1186/s43141-019-0011-6.
Henderson, S. T.; Johnson, Susan D.; Eichmann, J. & Koltunow, Anna M. G. Genetic analyses of the inheritance and expressivity of autonomous endosperm formation in Hieracium with different modes of embryo sac and seed formation. Ann. Bot. 119 (6):1001-1010, 2017. DOI: https://doi.org/10.1093/aob/mcw262.
Hojsgaard, D.; Klatt, Simone; Baier, R.; Carman, J. G. & Hörandl, Elvira. Taxonomy and biogeography of apomixis in angiosperms and associated biodiversity characteristics. Crit Rev Plant Sci. 33 (5):414-427, 2014. DOI: https://doi.org/10.1080/07352689.2014.898488.
Jiang, L. F. Diversity of Lolium multiflorum L based on SRAP markers worldwide. Prataculture Anim. Husbandry. 2017. DOI: https://doi.org/10.3969/j.issn.2096-3971.2017.03.002.
Kaushal, P.; Dwivedi, K. K.; Radhakrishna, A.; Srivastava, M. K.; Kumar, V.; Roy, A. K. et al. Partitioning apomixis components to understand and utilize gametophytic apomixis. Front Plant Sci. 10:256, 2019. DOI: https://doi.org/10.3389/fpls.2019.00256.
Khanday, I.; Skinner, D.; Yang, B.; Mercier, R. & Sundaresan, V. A male-expressed rice embryogenic trigger redirected for asexual propagation through seeds. Nature. 565:91-95, 2019. DOI: https://doi.org/10.1038/s41586-018-0785-8.
Kuwi, S. O.; Kyalo, M.; Mutai, C. K.; Mwilawa, A.; Hanson, J. & Djikeng, A. et al. Genetic diversity and population structure of Urochloa grass accessions from Tanzania using simple sequence repeat (SSR) markers. Braz. J. Bot. 41:699-709, 2018. DOI: https://doi.org/10.1007/s40415-018-0482-8.
Li, Z.; Long, R.; Zhang, T.; Wang, Z.; Zhang, F.; Yang, Q. et al. Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.). J. Plant Res. 130 (2):387-396, 2017. DOI: https://doi.org/10.1007/s10265-017-0905-9.
Liu, Y.; Merrick, P.; Zhang, Z.; Ji, C.; Yang, B. & Fei, S.-Z. Targeted mutagenesis in tetraploid switchgrass (Panicum virgatum L.) using CRISPR/Cas9. Plant Biotechnol. J. 16 (2):381-393, 2018. DOI: https://doi.org/10.1111/pbi.12778.
Liu, Z.; Dong, H.; Cui, Y.; Cong, Lina & Zhang, D. Application of different types of CRISPR/Cas-based systems in bacteria. Microb. Cell Fact. 19 (1):172, 2020 DOI: https://doi.org/10.1186/s12934-020-01431-z.
Loera-Sánchez, M.; Studer, B. & Kölliker, R. DNA-Based assessment of genetic diversity in grassland plant species: challenges, approaches, and applications. Agronomy. 9:881, 2019. DOI: https://doi.org/10.3390/agronomy9120881.
Luo, Y.; Zhang, X.; Xu, J.; Zheng, Y.; Pu, S.; Duan, Z. et al. Phenotypic and molecular marker analysis uncovers the genetic diversity of the grass Stenotaphrum secundatum. BMC Genetics. 21 (1):86, 2020. DOI: https://doi.org/10.1186/s12863-020-00892-w.
Majeský, L.; Vašut, R. J.; Kitner, M. & Trávníček, B. The pattern of genetic variability in apomictic clones of Taraxacum officinale indicates the alternation of asexual and sexual histories of apomicts. PLoS One. 7 (8):e41868, 2012. DOI: https://doi.org/10.1371/journal.pone.0041868.
Martínez‐Reyna, J. M. & Vogel, K. P. Incompatibility systems in switchgrass. Crop Sci. 42:1800-1805, 2002. DOI: https://doi.org/10.2135/cropsci2002.1800.
Morales-Nieto, C. R.; Avendaño-Arrazate, C.; Melgoza-Castillo, Alicia; Gil-Vega, Katia del C.; Quero-Carrillo, A.; Jurado-Guerra, P. et al. Caracterización morfológica y molecular de poblaciones de pasto banderita (Bouteloua curtipendula) en Chihuahua, México. Rev. Mex. Cienc. Pecu. 7 (4):455-469.http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11242016000400455&lng=es&tlng=es, 2016.
Mujjassim, N. E.; Mallik, M.; Rathod, N. K. K. & Nitesh, S. D. Cisgenesis and intragenesis a new tool for conventional plant breeding: A review. J. Pharmacogn. Phytochem. 8:2485-2489, 2019.
Muktar, M. S.; Teshome, A.; Hanson, J.; Habte, E.; Domelevo, J. B. & Lee, K. W. et al. Genotyping by sequencing provides new insights into the diversity of Napier grass (Cenchrus purpureus) and reveals variation in genome-wide LD patterns between collections. Sci. Rep. 9:6936, 2019. DOI: https://doi.org/10.1038/s41598-019-43406-0.
Nadeem, M. A.; Amjadz, M.; Qasim, M.; Doğan, Y.; Comertpay, G. & Yıldız, M. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotec. Eq. 32 (2):261-285, 2018. DOI: https://doi.org/10.1080/13102818.2017.1400401.
Ngoyawu, M.; Hanson, J.; Ekaya, W. N.; Kinyamario, J. I.; Mweki, P.; Lall, G. et al. Genetic variation between ecotypic populations of Chloris roxburghiana grass detected through RAPD analysis. Afr. J. Range Forage Sci. 22 (2):107-115, 2005. DOI: https://doi.org/10.2989/10220110509485868.
Nybom, H.; Weising, K. & Rotter, B. DNA fingerprinting in botany: past, present, future. Investig. Genet. 5 (1):2223-2241, 2014. DOI: https://doi.org/10.1186/2041-2223-5-1.
Ozias-Akins, Peggy & Van Dijk, P. J. Mendelian genetics of apomixis in plants. Annu. Rev. Genet. 41:509-537, 2007. DOI: https://doi.org/10.1146/annurev.genet.40.110405.090511.
Peltier, E.; Sharma, V.; Martí-Raga, Maria; Roncoroni, M.; Bernard, Margaux; Jiranek, V. et al. Dissection of the molecular bases of genotype x environment interactions: a study of phenotypic plasticity of Saccharomyces cerevisiae in grape juices. BMC Genomics. 19 (1):772, 2018. DOI: https://doi.org/10.1186/s12864-018-5145-4.
Poblete-Vargas, J.; Valadez-Moctezuma, Ernestina; García-de-los-Santos, G.; Martínez-Flores, C. & Peralta-Martínez, A. Differentiation of apomictic and sexual genotypes of Brachiaria spp., using molecularmarkers. Ecosistemas y recur. agropecuarios. 5 (13):71-80, 2018. DOI: https://doi.org/10.19136/era.a5nl3.1180.
Porceddu, A.; Albertini, E.; Barcaccia, G.; Falistocco, Egizia & Falcinelli, M. Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudo-testcross strategy based on AFLP and SAMPL markers. Theor. Appl. Genet. 104 (2-3):273-280, 2002. DOI: https://doi.org/110.1007/s001220100659.
Quero-Carrillo, A. R.; Enríquez Quiroz, J. F.; Morales-Nieto, C. R. & Miranda-Jiménez, Leonor. Apomixis y su importancia en la selección y mejoramiento de gramíneas forrajeras tropicales: Revisión. Rev. Mex. Cienc. Pecu. 1 (1):25-42. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-11242010000100003&lng=es&nrm=iso, 2010.
Raza, A. & Shahi, M. S. Next-generation sequencing technologies and plant molecular virology: a practical perspective. In: L. P. Awasthi, ed. Applied plant virology. Cambridge, USA: Academic Press. p. 131-140, 2020.
Romero, María; Mujica, A.; Pineda, E.; Camapaza, Y. & Zavalla, N. Genetic identity based on simple sequence repeat (SSR) markers for Quinoa (Chenopodium quinoa Willd.). Cienc. Inv. Agr. 46 (2):166-178, 2019. DOI: http://dx.doi.org/10.7764/rcia.v45i2.2144.
Savidan, Y. Apomixis: genetics and breeding. J. Janick, ed. New Jersey, USA: John Wiley & Sons, Inc. Plant breeding reviews. Vol. 18, 2000. DOI: https://doi.org/10.1002/9780470650158.ch2.
Schmidt, A. Controlling apomixis: shared features and distinct characteristics of gene regulation. Genes, Basel. 11 (3):329, 2020. DOI: https://doi.org/10.3390/genes11030329.
Selva, J. P.; Siena, L.; Rodrigo, J. M.; Garbus, I.; Zappacosta, D. & Romero, J. R. et al. Temporal and spatial expression of genes involved in DNA methylation during reproductive development of sexual and apomictic Eragrostis curvula. Sci. Rep. 7:15092, 2017. DOI: https://doi.org/10.1038/s41598-017-14898-5.
Soliman, M.; Espinoza, F.; Ortiz, J. P. A. & Delgado, Luciana. Heterochronic reproductive developmental processes between diploid and tetraploid cytotypes of Paspalum rufum. Ann. Bot. 123 (5):901-915, 2019. DOI: https://doi.org/10.1093/aob/mcy228.
Sun, M.; Zhang, C.; Zhang, X. Q.; Fan, Y.; Fu, K.; Wu, W. et al. AFLP assessment of genetic variability and relationships in an Asian wild germplasm collection of Dactylis glomerata L. C. R. Biol. 340 (3):145-155, 2017. DOI: https://doi.org/10.1016/j.crvi.2016.12.003.
Svitashev, S.; Schwartz, Christine; Lenderts, B.; Young, J. K. & Mark-Cigan, A. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat Commun. 7:13274, 2016. DOI: https://doi.org/10.1038/ncomms13274.
Svitashev, S.; Young, J. K.; Schwartz, Christine; Gao, H.; Falco, S. C. & Cigan, A. M. Targeted mutagenesis, precise gene editing, and site‐specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 169:931-945, 2015. DOI: https://doi.org/10.1104/pp.15.00793.
Tibihika, P. D.; Curto, M.; Dornstauder-Schrammel, E.; Winter, S.; Alemayehu, E.; Weidbacher, H. et al. Application of microsatellite genotyping by sequencing (SSR-GBS) to measure genetic diversity of the East African Oreochromis niloticus. Conserv. Genet. 20:357-372, 2019. DOI: https://doi.org/10.1007/s10592-018-1136-x.
Wang, C.; Liu, Q.; Shen, Y.; Hua, Y.; Wang, J. & Lin, J. et al. Clonal seeds from hybrid rice by simultaneous genome engineering of meiosis and fertilization genes. Nat. Biotechnol. 37:283-286, 2019. DOI: https://doi.org/10.1038/s41587-018-0003-0.
Watson, A.; Ghosh, S.; Williams, M. J.; Cuddy, W. S.; Simmonds, J. & Rey, M. D. et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants. 4:23-29, 2018. DOI: https://doi.org/10.1038/s41477-017-0083-8.
Worthington, Margaret; Heffelfinger, C.; Bernal, Diana; Quintero, Constanza; Zapata, Yeny P.; Perez, J. G. et al. A parthenogenesis gene candidate and evidence for segmental allopolyploidy in apomictic Brachiaria decumbens. Genetics. 203 (3):1117-1132, 2016. DOI: https://doi.org/10.1534/genetics.116.190314.
Xu, K.; Wang, Y.; Shi, Lili; Sun, F.; Liu, S. & Xi, Y. PvTB1, a Teosinte Branched1 gene homolog, negatively regulates tillering in switchgrass. J. Plant Growth Regul. 35 (1):44-53, 2016. DOI: https://doi.org/10.1007/s00344-015-9505-x.
Zappacosta, D.; Gallardo, Jimena; Carballo, J.; Meier, M.; Rodrigo, J. M.; Gallo, C. A. et al. A high-density linkage map of the forage grass Eragrostis curvula and localization of the diplospory locus. Front Plant Sci. 10:918, 2019. DOI: https://doi.org/10.3389/fpls.2019.00918.
Zorzatto, C.; Chiari, L.; Bitencourt, G. de A.; Valle, C. B. do; Leguizamón, G. O. de C.; Schuster, I. et al. Identification of a molecular marker linked to apomixis in Brachiaria humidicola (Poaceae). Plant Breeding. 129:734-736, 2010. DOI: https://doi.org10.1111/j.1439-0523.2010.01763.x.
Zúñiga-Orozco, A. Tecnología CRISPR-Cas9: una herramienta aplicable en la agricultura de Costa Rica. Repert. Cient. 20 (2):131-138, 2018. DOI: https://doi.org10.22458/rc.v20i2.2396.
Publicado
2021-10-28
Ver tu Cita
CARRODEGUAS-GONZALEZ, Ayerin; ZÚÑIGA-OROZCO, Andrés. Aplicación de herramientas moleculares para el mejoramiento genético de pasturas. Pastos y Forrajes, [S.l.], v. 44, oct. 2021. ISSN 2078-8452. Disponible en: <https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=2243>. Fecha de acceso: 03 jul. 2024
Sección
Artículo científico