Efecto del IHPLUS® sobre el proceso de germinación de Sorghum bicolor L. (Moench)

  • Maykelis Díaz Solares Estación Experimental de Pastos y Forrajes Indio Hatuey, Universidad de Matanzas, Ministerio de Educación Superior Central España Republicana CP 44280, Matanzas http://orcid.org/0000-0001-8149-2948
  • Yunel Pérez Hernández Centro de Estudios Biotecnológicos, Facultad de Ciencias Agropecuarias, Universidad de Matanzas
  • Jessika González Fuentes Centro de Estudios Biotecnológicos, Facultad de Ciencias Agropecuarias, Universidad de Matanzas
  • Inelvis Castro Cabrera Estación Experimental de Pastos y Forrajes Indio Hatuey, Universidad de Matanzas, Ministerio de Educación Superior Central España Republicana CP 44280, Matanzas
  • Leticia Fuentes Alfonso Centro de Estudios Biotecnológicos, Facultad de Ciencias Agropecuarias, Universidad de Matanzas
  • Madyu Matos Trujillo Centro de Estudios Biotecnológicos, Facultad de Ciencias Agropecuarias, Universidad de Matanzas
  • Maryla Sosa del Castillo Centro de Estudios Biotecnológicos, Facultad de Ciencias Agropecuarias, Universidad de Matanzas

Resumen

Este estudio tuvo como objetivo evaluar el efecto del bioproducto IHPLUS® y sus tiempos de inmersión, sobre el proceso de germinación de Sorghum bicolor L. Moench cv. UDG-110. Se estudiaron 10 tratamientos: control (agua destilada); y otros nueve con aplicación del bioproducto en tres concentraciones (2, 4 y 6 %) y tres tiempos de inmersión (2, 4 y 6 h). Las semillas se sembraron en placas Petri de 5 cm de diámetro, sobre soporte de papel de filtro humedecido con agua destilada. Se evaluaron los indicadores siguientes: porcentaje y valor de germinación, longitud de la raíz y de la parte aérea, actividad α-amilasa, y contenido de proteínas y de azúcares reductores. Se utilizó un diseño completamente aleatorizado con cuatro réplicas por tratamiento. Los resultados fueron procesados con el paquete estadístico SPSS® versión 15.0. Se realizó un ANOVA y la prueba de rangos múltiples de Tukey para la comparación de medias. Los tratamientos con IHPLUS® mostraron un efecto positivo sobre el proceso de germinación. Se observó  un incremento en el valor de germinación en las primeras 48 h del ensayo con la aplicación del producto, así como valores superiores en la longitud de la raíz y de la parte aérea. Hubo un incremento de la actividad α-amilasa que se correspondió con un aumento en las concentraciones de azúcares reductores y proteínas solubles totales. Se concluye que el IHPLUS® es un bioproducto efectivo para estimular el proceso de germinación del S. bicolor L. Moench cv. UDG-110, con potencialidades para el desarrollo de una agricultura agroecológica.

Citas

1. Agrawal, D. P. K. & Agrawal, S. Characterization of Bacillus sp. strains isolated from rhizosphere of tomato plants (Lycopersicon esculentum) for their use as potential plant growth promoting rhizobacteria. Int. J. Curr. Microbiol. App. Sci. 2 (10):406-417, 2013.
2. Babu, Dincy & Balasaravanan, T. Evaluation of the efficiency of plant growth promoting rhizobacteria and its effect on germination of Solanum melongena L. seeds. Int. J. Innov. Res. Sci. Eng. Technol. 6 (1):576-581, 2017. DOI: http://doi.org/10.15680/IJIRSET.2017.0601103.
3. Biswas, S.; Lahiri, P. & Das, S. A study on the role of a close homologue of Bacillus cereus isolated from Metaphire posthumaon germination of gram (Cicer arietinum L.) seeds for its use as biofertilizer. J. Global Biosci. 3 (4):708-713, 2014.
4. Carrillo-Castaňeda, G.; Juárez-Muňos, J. J.; Peralta-Videa, J. R.; Gómez, E.; Tiemann, K. J.; Duarte-Gardea, M. et al. Alfalfa growth promotion by bacteria grown under iron limiting conditions. Adv. Environ. Res. 6 (3):391-399, 2002.
5. Chagas Jr., A. F.; Oliveira, A. G. de; Oliveira, L. A. de; Santos, G. R. dos; Chagas, L. F. B.; Silva, A.L. da S. et al. Production of indole-3-acetic acid by bacillus isolated from different soils. Bulg. J. Agric. Sci. 21 (2):282–287, 2015.
6. Chookietwattana, Kannika & Maneewan, Kedsukon. Screening of efficient halotolerant phosphate solubilizing bacterium and its effect on promoting plant growth under saline conditions. World Appl. Sci. J. 16 (8):1110-1117, 2012.
7. Damam, M.; Kaloori, K.; Gaddam, B. & Kausar, R. Plant growth promoting substances (Phytohormones) produced by rhizobacterial strains isolated from the rhizosphere of medicinal plants. Int. J. Pharm. Sci. Rev. Res. 37 (1):130-136, 2016.
8. Djavanshir, K. & Pourbeik, H. Germination value-a new formula. Silvae Genet. 25 (2):79-83, 1976.
9. García-Martín, D.; Saucedo, O. & Castillo, A. UDG-110. Variedad de sorgo de grano blanco con adaptación tropical. Centro Agrícola. 20 (2):90-94, 1993.
10. Grosu, A. I.; Sicuia, Oana A.; Dobre, A.; Voaides, Cătălina & Cornea, Călina P. Evaluation of some Bacillus spp. strains for the biocontrol of Fusarium graminearum and F. culmorum in wheat. Agric. Agric. Sci. Procedia. 6:559-566, 2015. DOI: http://doi.org/doi:10.1016/j.aaspro.2015.08.085.
11. Higa, T. Effective microorganisms: A biotechnology for mankind. Proceedings of the 1st International Conference on Kyusei Nature Farming. Washington D.C.: USDA. p. 8-14, 1991.
12. ISTA. Rules proposals for the international rules for seed testing. Bassersdorf, Switzerland: International Seed Testing Association, 2014.
13. Jamil, M.; Zeb, S.; Anees, M.; Roohi, A.; Ahmed, I.; Rehman, S. et al. Role of Bacillus licheniformis in phytoremediation of nickel contaminated soil cultivated with rice. Int. J. Phytoremediation. 16 (6):554-571, 2014.
14. Khatab, O. H.; Nasib, M. A. A.; Ghoneimy, E. A.; Abo-Elnasr, A. A.; Hassan, H. A-A.; Hassan, M. Y. A. et al. Role of microorganisms in our life's as ecofrindely and replacement for chemical methods. Int. J. Pharm. Life Sci. 6 (2):4221-4229, 2015.
15. Lambrecht, M.; Okon, Y.; Vande Broek, A. & Vanderleyden, J. Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 8 (7):298-300, 2000.
16. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L. & Randall, R. J. Protein measurement the Folinphenol reagent. J. Biol. Chem. 193 (1):265-275, 1951.
17. Mahadevamurthy, M.; Channappa, T. M.; Sidappa, M.; Raghupathi, M. S. & Nagaraj, A. K. Isolation of phosphate solubilizing fungi from rhizosphere soil and its effect on seed growth parameters of different crop plants. J. Appl. Biol. Biotechnol. 4 (6):22-26, 2016. DOI: http://doi.org/10.7324/JABB.2016.40604.
18. Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31 (3):426-428, 1959. DOI: http://doi.org/10.1021/ac60147a030.
19. Mohd Din, A. R. J.; Hanapi, S. Z.; Supari, N.; Alam, S. A. M.; Javed, M. A.; Tin, L. C. et al. Germination, seedling growth, amylase and protease activities in Malaysian upland rice seed under microbial inoculation condition. J. Pure Appl. Microbio. 8 (4):2627-2635, 2014.
20. Mohite, B. Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J. Soil Sci. Plant Nutr. 13 (3):638-649, 2013. DOI: http://dx.doi.org/10.4067/S0718-95162013005000051.
21. Morais, Tamara P. de; Brito, C. H. de; Branda, A. M. & Rezende, W. S. Inoculation of maize with Azospirillum brasilense in the seed furrow. Rev. Ciênc. Agron. 47 (2):290-298, 2016.
22. Olle, Margit. The influence of effective microorganisms on the growth and nitrate content of vegetable transplants. Journal of Advanced Agricultural Technologies. 2 (1):25-28, 2015. DOI: http://doi.org/10.12720/joaat.2.1.25-28.
23. Proietti, Ilaria; Frazzoli, Chiara & Mantovani, A. Exploiting nutritional value of staple foods in the world’s semi-arid areas: risks, benefits, challenges and opportunities of sorghum. Healthcare (Basel). 3 (2):172-193, 2015. DOI: http://doi.org/10.3390/healthcare3020172.
24. Qin, S.; Zhou, W.; Li, Z. & Lyu, D. Effects of rhizobacteria on the respiration and growth of Cerasus sachalinensis Kom. Span. J. Agric. Res. 14 (2):1-13, 2016.
25. Sigarroa, A. Biometría y diseño experimental. La Habana: Editorial Pueblo y Educación, 1985.
26. Soares, Vanessa N.; Radke, Aline K.; Tillmann, Maria Â. A.; Moura, Andréa B. & Schuch, L. O. B. Physiological performance of rice seeds treated with thiamethoxam or rhizobacteria under different temperatures. J. Seed Sci. (Londrina). 36 (2):186-193, 2014. DOI: https://dx.doi.org/10.1590/2317-1545v32n2925.
27. Taiz, L. & Zeiger, E. Fisiología vegetal. 5 ed. Porto Alegre, Brasil: Artmed. 2013.
28. Thakur, A. & Parikh, S. C. Auxin hormone production and plant growth promotion by phosphate solubilizing bacteria of groundnut rhizosphere. Int. J. Innov. Res. Sci. Eng. Technol. 4 (9):8539-8548, 2015. DOI: http://doi.org/10.15680/IJIRSET.2015.0409078.
29. Ullah, F.; Bano, A. & Nosheen, Asia. Effects of plant growth regulators on growth and oil quality of canola (Brassica napus L.) under drought stress. Pak. J. Bot. 44 (6):1873-1880, 2012.
Publicado
2019-03-21
Ver tu Cita
DÍAZ SOLARES, Maykelis et al. Efecto del IHPLUS® sobre el proceso de germinación de Sorghum bicolor L. (Moench). Pastos y Forrajes, [S.l.], v. 42, n. 1, p. 30-38, mar. 2019. ISSN 2078-8452. Disponible en: <https://payfo.ihatuey.cu/index.php?journal=pasto&page=article&op=view&path%5B%5D=2082>. Fecha de acceso: 22 sep. 2019
Sección
Artículo científico